

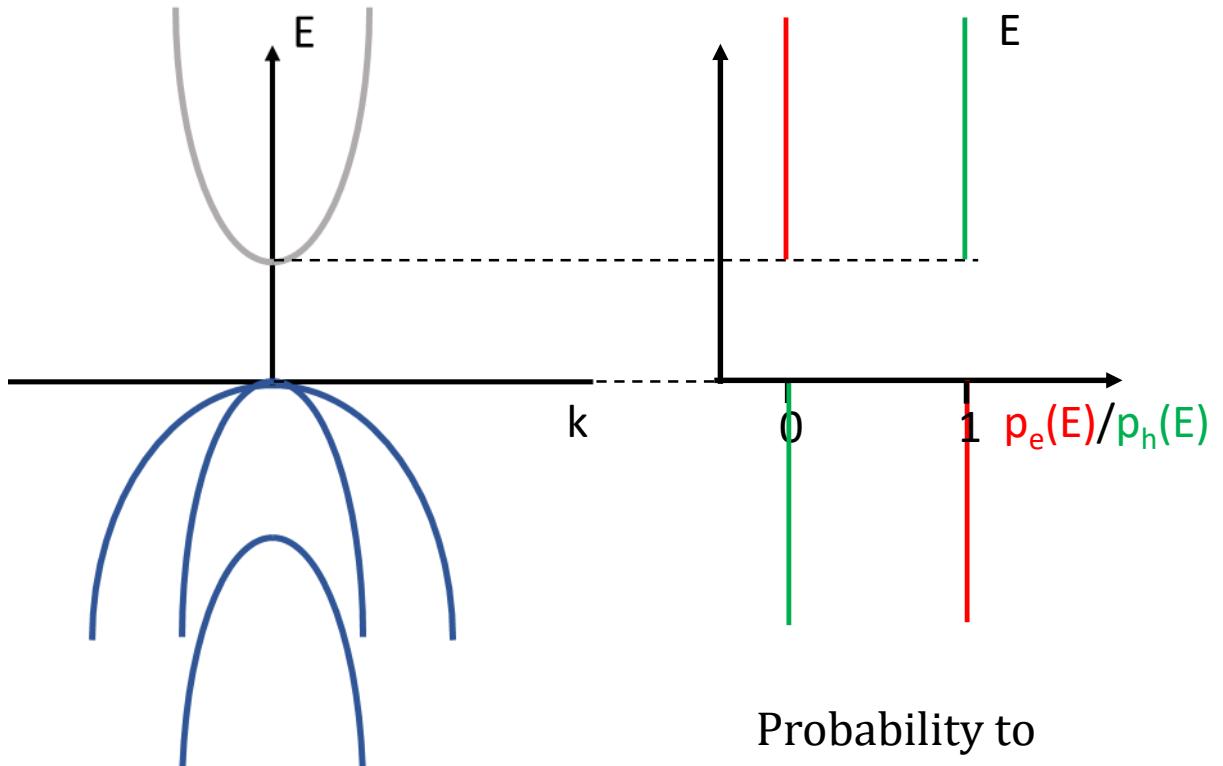
Class 04

Charge density in intrinsic semiconductors

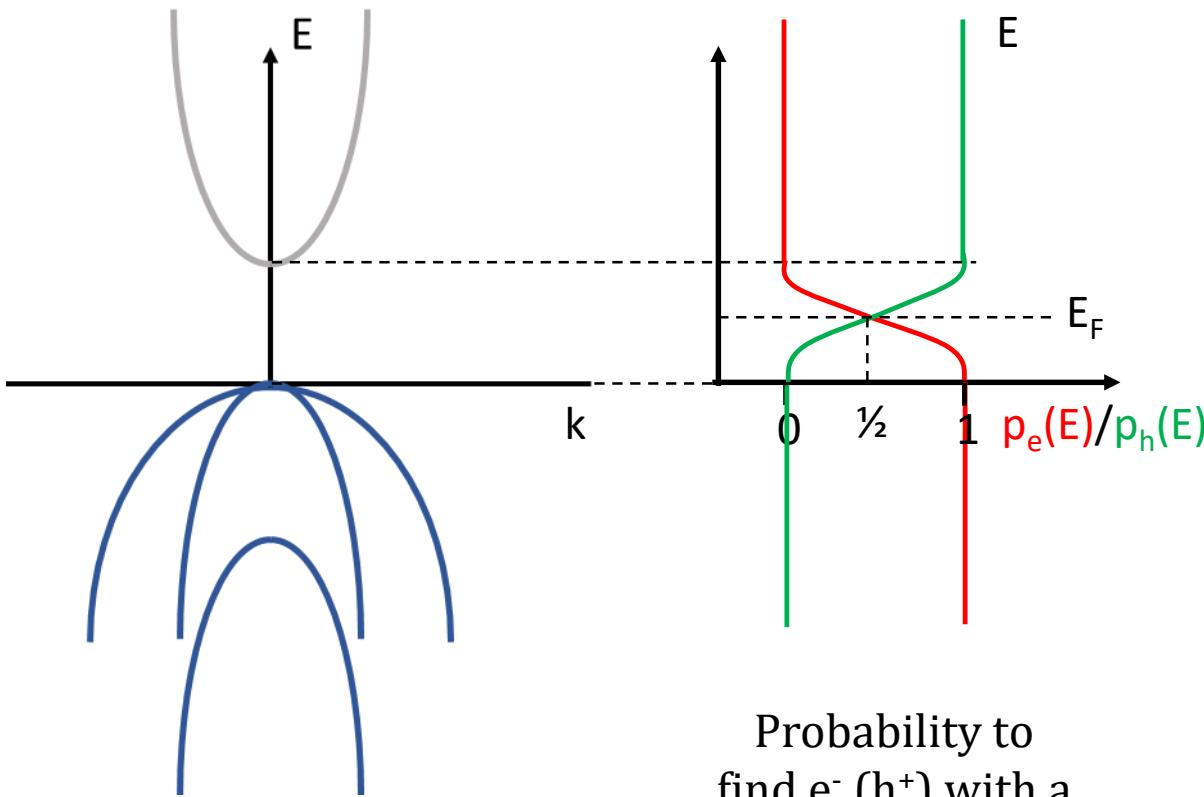
25.02.2025

- Fermi-Dirac distribution and Fermi energy
- Carrier Statistics
- Charge density engineering
 - Effect of band gap
 - Effect of dimensionality
 - Effect of temperature
 - Effect of electric field
 - Effect of confinement

Carrier Statistics



Probability to
find e^- (h^+) with a
certain energy at
 $T = 0K$



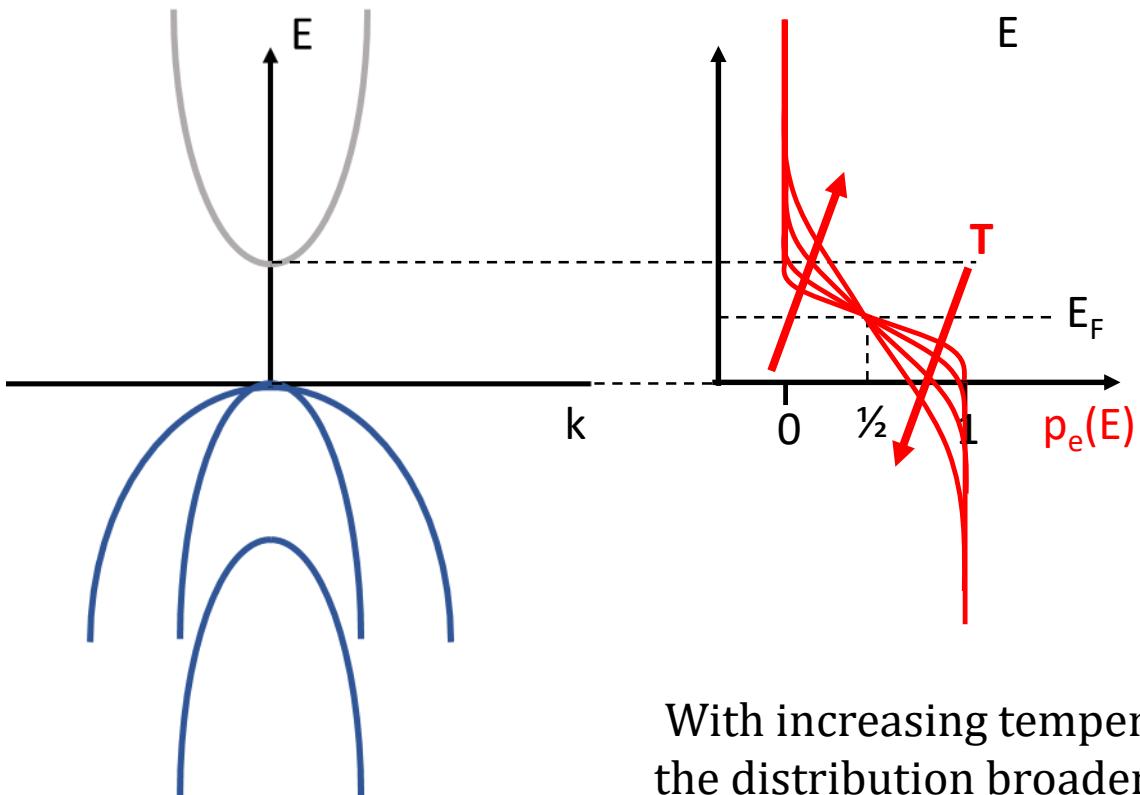
Fermi-Dirac distribution

$$f_e(E) = \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1} .$$

$$f_h(E) = 1 - \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1} = \frac{1}{\exp\left(-\frac{E-E_F}{kT}\right) + 1}$$

Can you give the definition of E_F starting from the general expression of FD distribution?

Please note that by definition, E_F represents the chemical potential of the crystal.



With increasing temperature the distribution broadens and the probability to find $e^- (h^+)$ in the conduction (valence) band is higher than 0

Fermi-Dirac distribution

$$f_e(E) = \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1} .$$

$$f_h(E) = 1 - \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1} = \frac{1}{\exp\left(-\frac{E-E_F}{kT}\right) + 1}$$

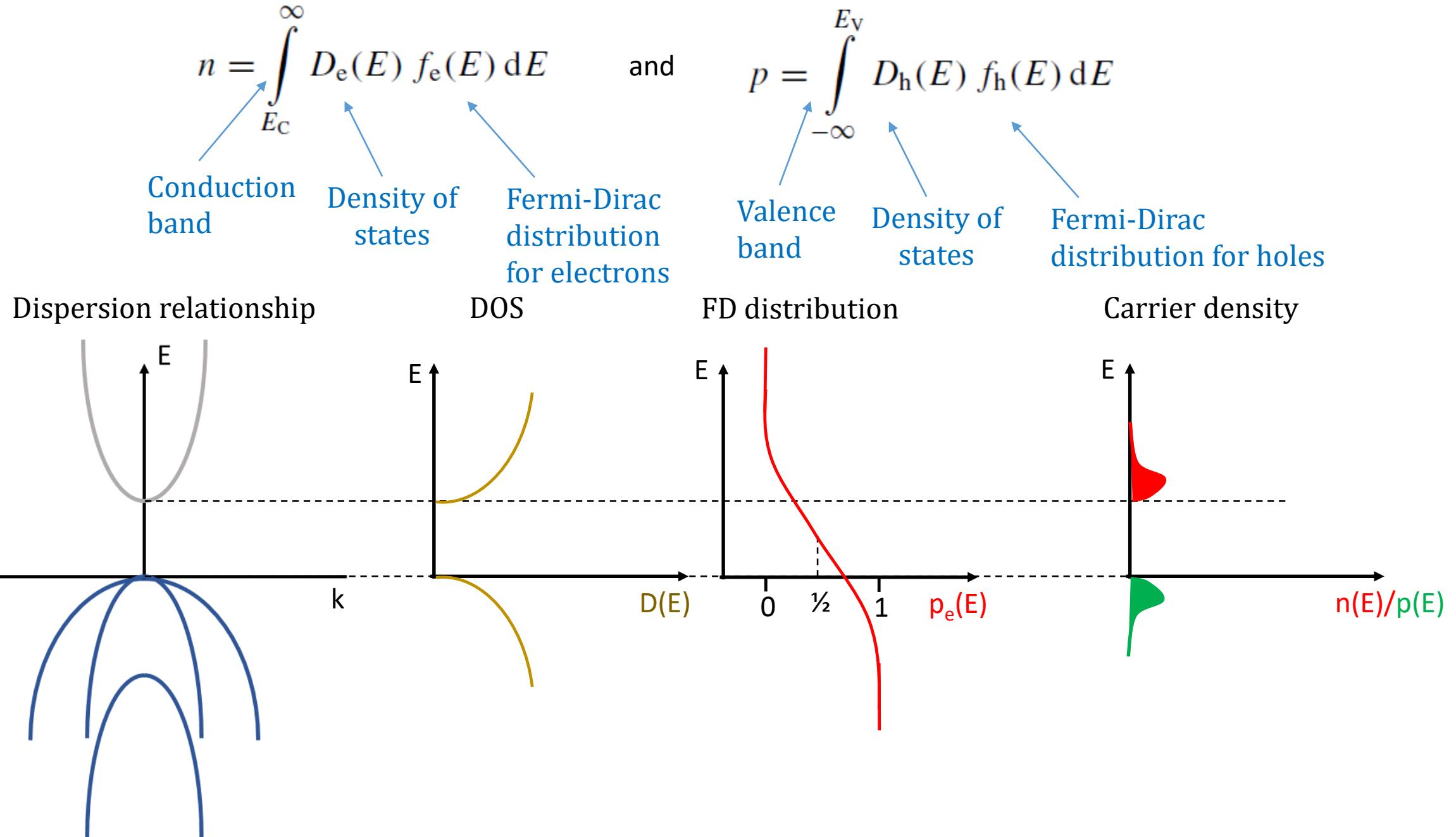
where:

$$f_e(E_F) = f_h(E_F) = \frac{1}{2}$$

E_F is the Fermi energy

Please note that by definition, E_F represents the chemical potential of the crystal.

Carrier density



Analytical solution to the charge density integral

$$n = \int_{E_C}^{\infty} D_e(E) f_e(E) dE$$

where:

$$D_e^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_{d,e}}{\hbar^2} \right)^{3/2} \sqrt{E - E_C}, \quad E > E_C$$

$$D_h^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_{d,h}}{\hbar^2} \right)^{3/2} \sqrt{E_V - E}, \quad E < E_V.$$

$$f_e(E) = \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1}.$$

Boltzmann approximation

$$\text{If } E - E_F \gg kT,$$

$$f_e(E) \cong \exp\left(-\frac{E - E_F}{kT}\right).$$

$$\rightarrow \begin{cases} n = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2} \exp\left(\frac{E_F - E_C}{kT}\right) = N_C \exp\left(\frac{E_F - E_C}{kT}\right) \\ p = 2 \left(\frac{m_h k T}{2\pi \hbar^2} \right)^{3/2} \exp\left(-\frac{E_F - E_V}{kT}\right) = N_V \exp\left(-\frac{E_F - E_V}{kT}\right) \end{cases}$$

where: $N_C = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2}$ $N_V = 2 \left(\frac{m_h k T}{2\pi \hbar^2} \right)^{3/2}$

N_C (N_V) is called conduction (valence) band edge density of states

E_F for intrinsic semiconductors

$$n = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2} \exp \left(\frac{E_F - E_C}{k T} \right) = N_C \exp \left(\frac{E_F - E_C}{k T} \right) .$$

$$p = 2 \left(\frac{m_h k T}{2\pi \hbar^2} \right)^{3/2} \exp \left(-\frac{E_F - E_V}{k T} \right) = N_V \exp \left(-\frac{E_F - E_V}{k T} \right) .$$

+

ELECTRONEUTRALITY CONDITION
 $n = p$ for intrinsic semiconductors

where: $N_C = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2}$ $N_V = 2 \left(\frac{m_h k T}{2\pi \hbar^2} \right)^{3/2}$,

$$N_C \exp \left(\frac{E_F - E_C}{k T} \right) = N_V \exp \left(\frac{E_V - E_F}{k T} \right)$$

E_i is the midgap energy

$$\frac{E_F - E_C - E_V + E_F}{k T} = \ln \frac{N_V}{N_C}$$

$$\frac{2E_F - 2E_i}{k T} = -\frac{3}{2} \ln \frac{m_e^*}{m_h^*}$$

$$E_F = E_i - \frac{3}{4} k T * \ln \frac{m_e^*}{m_h^*}$$

Mass action law

ELECTRONEUTRALITY CONDITION

$-n + p = 0$ (for intrinsic semiconductors)

$$n = p$$

$n^*p = n_i^2$ for all the non-degenerate semiconductors

Intrinsic
electron(hole)
density

$$n_i = p_i = \sqrt{N_V N_C} \exp\left(-\frac{E_g}{2kT}\right)$$

n_i depends on:

- The temperature
- The bandgap
- The (conduction and valence band) DOS

n_i does not depend on:

- Fermi energy

And it is therefore valid also for doped semiconductors

Recap equations

$$n = \int_{E_C}^{\infty} D_e(E) f_e(E) dE$$

$$n = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2} \exp \left(\frac{E_F - E_C}{k T} \right) = N_C \exp \left(\frac{E_F - E_C}{k T} \right)$$

$$N_C = 2 \left(\frac{m_e k T}{2\pi \hbar^2} \right)^{3/2}$$

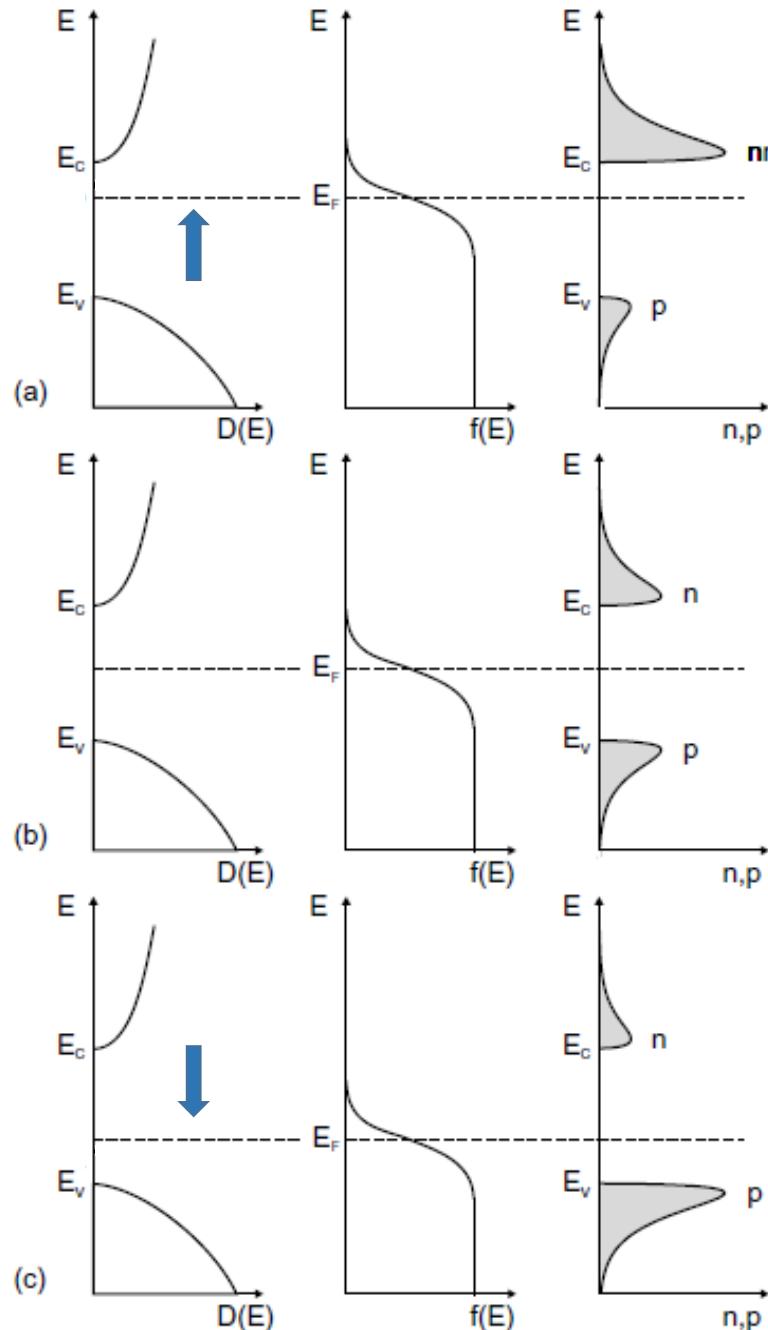
$$E_F = E_i - \frac{3}{4} k T * \ln \frac{m_e^*}{m_h^*}$$

$$n_i = p_i = \sqrt{N_V N_C} \exp \left(-\frac{E_g}{2kT} \right)$$

$$n_i = p_i = \sqrt{N_V N_C} \exp\left(-\frac{E_g}{2kT}\right)$$

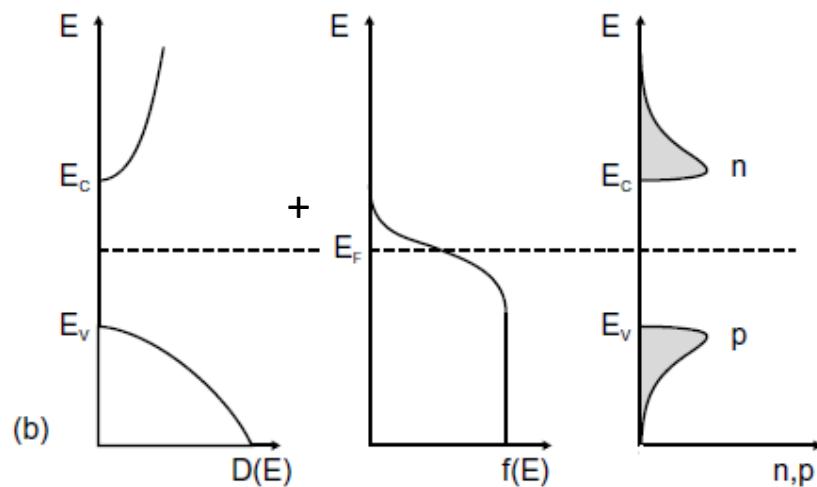
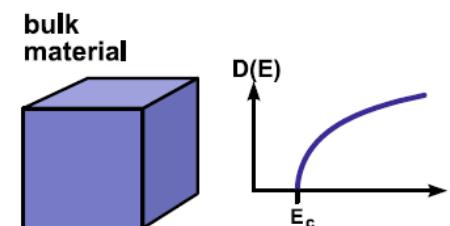
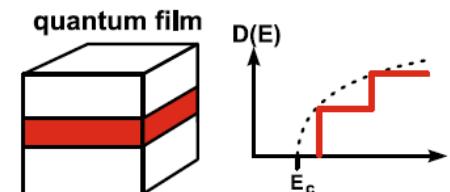
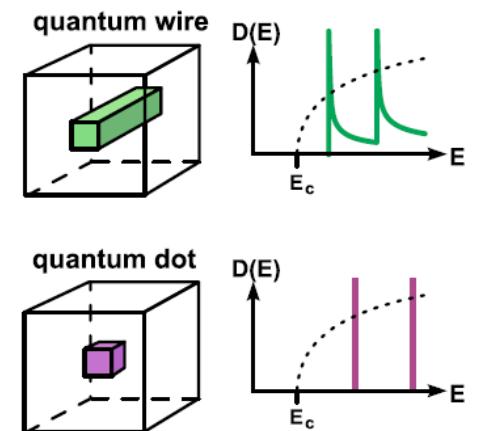
	E_g (eV)	n_i (cm $^{-3}$)
InSb	0.18	1.6×10^{16}
InAs	0.36	8.6×10^{14}
Ge	0.67	2.4×10^{13}
Si	1.124	1.0×10^{10}
GaAs	1.43	1.8×10^6
GaP	2.26	2.7×10^0
GaN	3.3	$\ll 1$

$$n = N_C \exp\left(\frac{E_F - E_C}{kT}\right)$$



Impact of **dimensionality** on the carrier density

$$n = \int_{E_C}^{\infty} D_e(E) f_e(E) dE, \quad p = \int_{-\infty}^{E_V} D_h(E) f_h(E) dE.$$



Impact of **temperature** on the carrier density

$$n_i = p_i = \sqrt{N_V N_C} \exp\left(-\frac{E_g}{2kT}\right)$$

The bandgap also varies with T due to a different electron-phonon interaction and the variation of the interatomic distance.

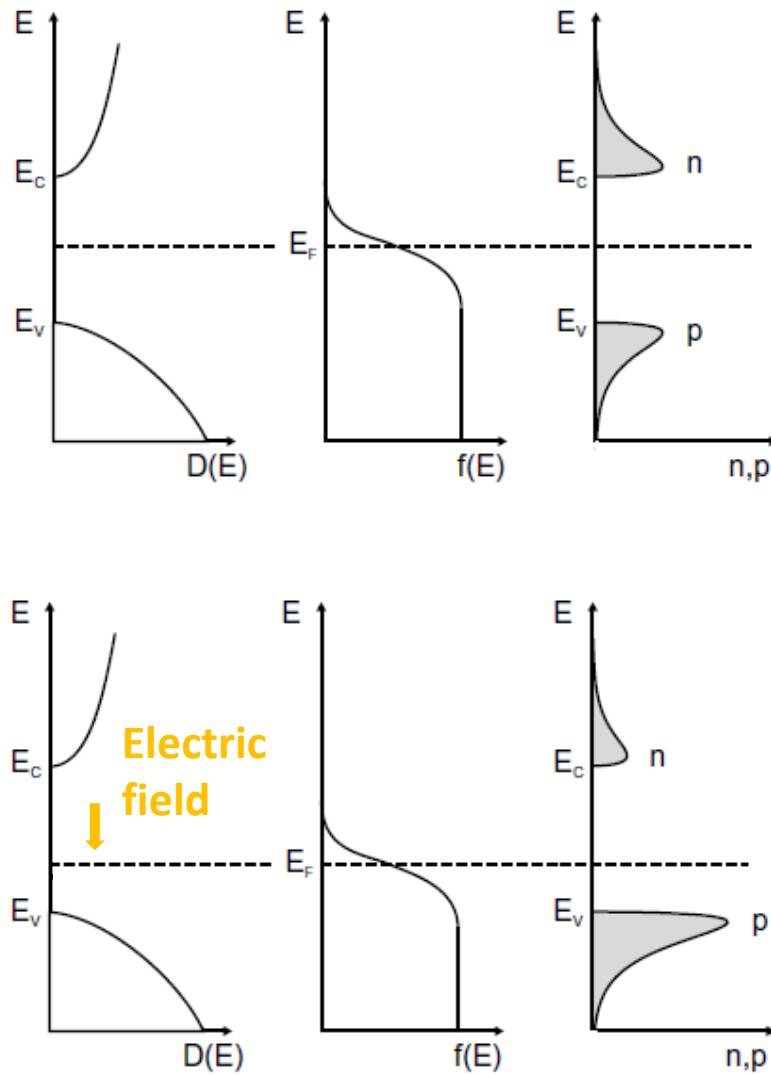
How does the band gap change with increasing T?

- Larger BG
- Same BG (negligible effect)
- Smaller BG

Which factor is dominant for the n_i ?

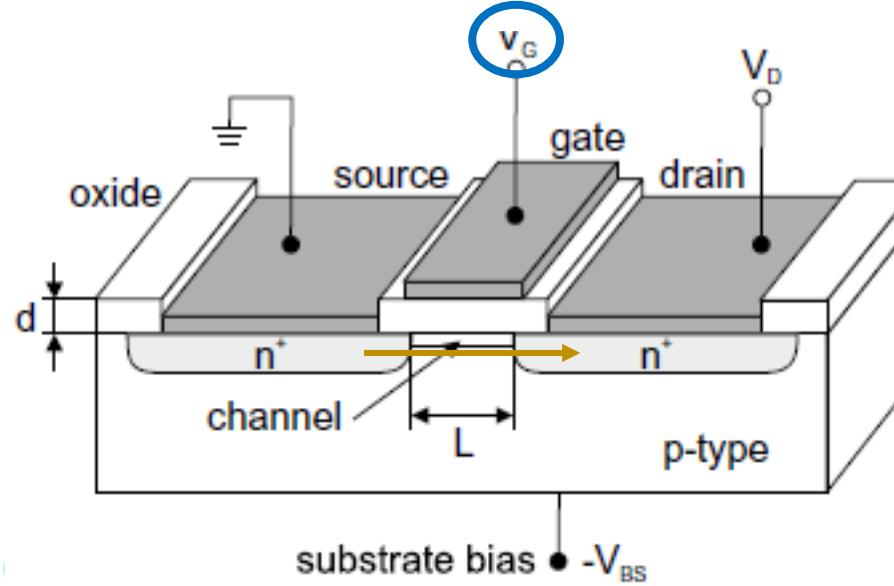
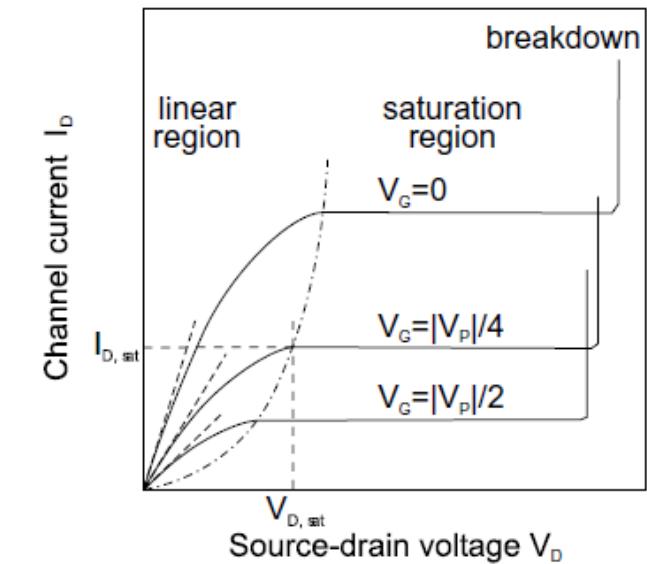
To be solved in class
5 minutes

Impact of **electric field** on the carrier density

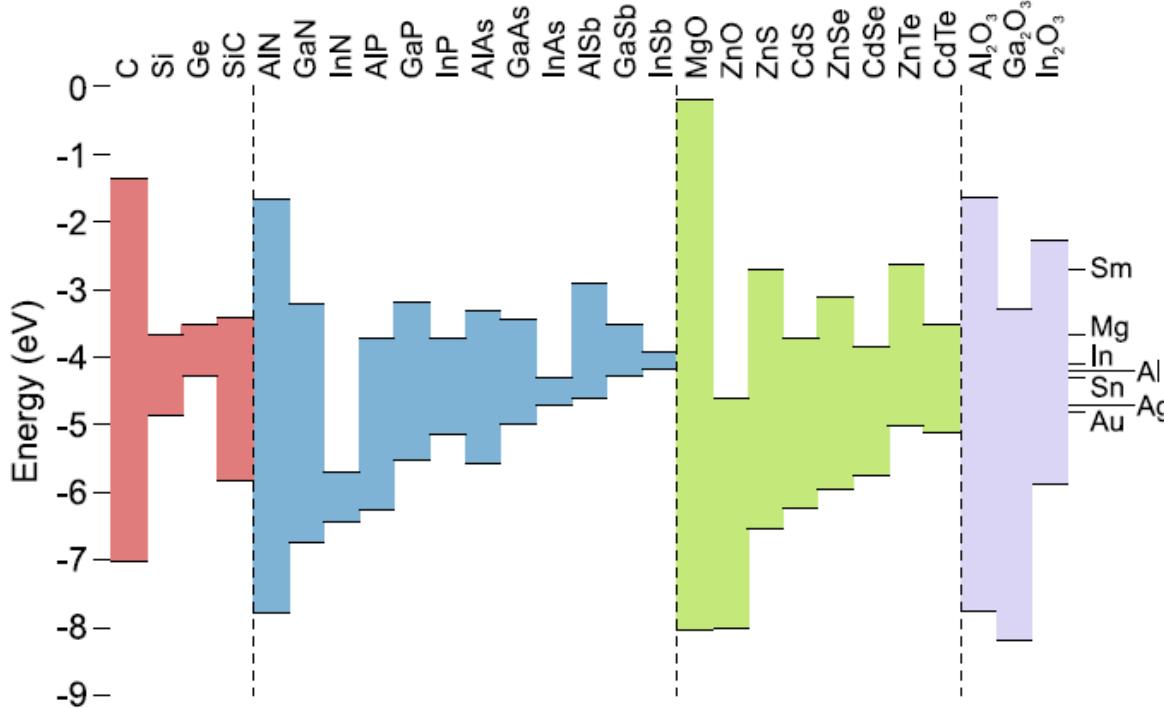
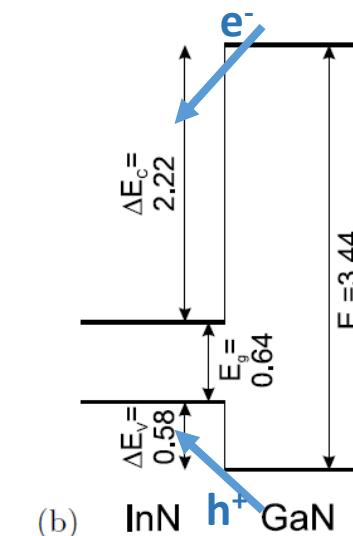


Electronic switch: Field effect transistor (FET)

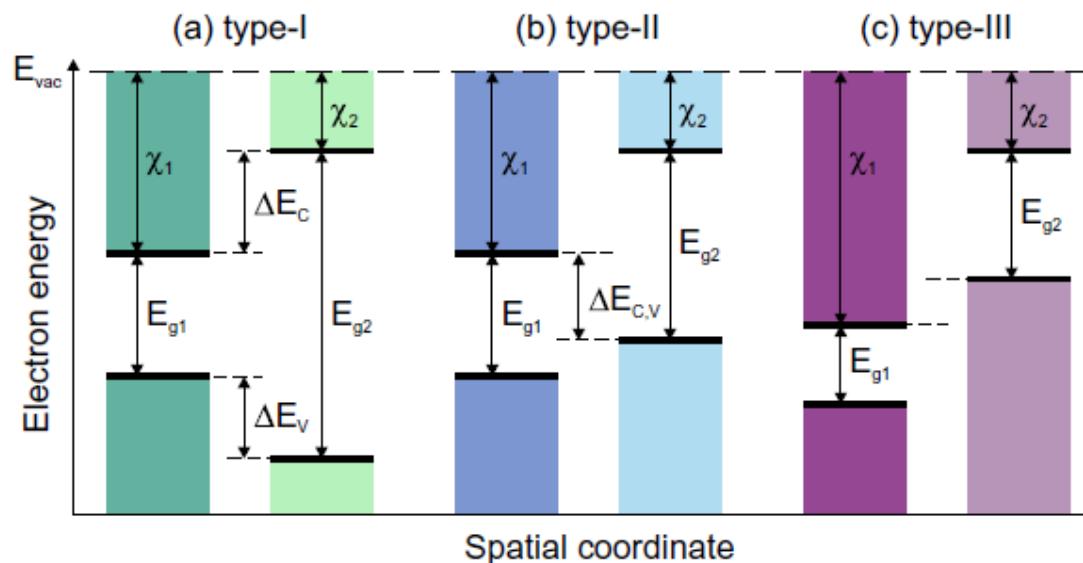
Gate voltage → Controlling the Fermi energy into the «channel»



Impact of confinement and heterostructures on the carrier density



(b) InN h^+ GaN

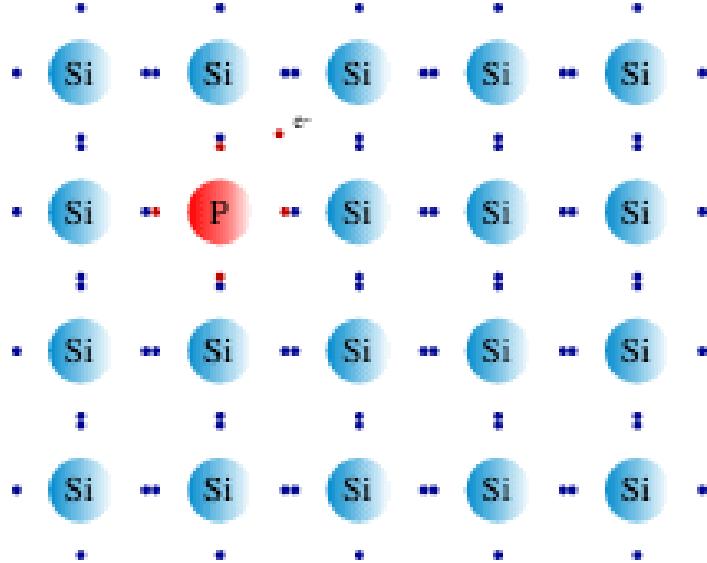
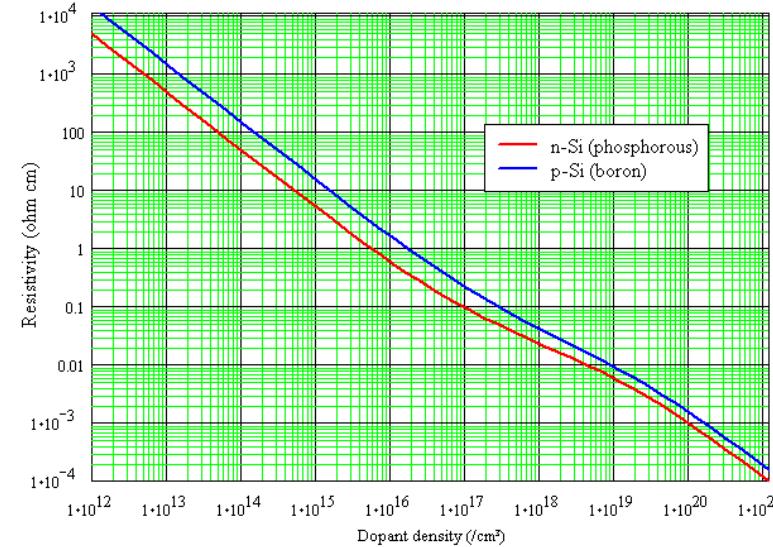


Grundmann 12.3

Topic of Classes 09-10

Impact of **impurities** on the carrier density

Topic of Class 05



**INCREASE OF CONDUCTIVITY
WITH IMPURITIES**